1. Name of Property
 Historic name: Zenas King Bowstring Bridge
 Other names/site number: Brandewie Bridge (SHE-4-4-OHI-B); Loramie Creek Bridge
 Name of related multiple property listing: N/A
 (Enter "N/A" if property is not part of a multiple property listing)

2. Location
 Street & number: Benjamin Trail, Amos Lake, Tawawa Park
 City or town: Sidney
 State: OH
 County: Shelby
 Not For Publication: n/a
 Vicinity: n/a

3. State/Federal Agency Certification
 As the designated authority under the National Historic Preservation Act, as amended,
 I hereby certify that this _X_ nomination ___ request for determination of eligibility meets
 the documentation standards for registering properties in the National Register of Historic
 Places and meets the procedural and professional requirements set forth in 36 CFR Part 60.
 In my opinion, the property _X_ meets ___ does not meet the National Register Criteria. I
 recommend that this property be considered significant at the following
 level(s) of significance:
 ___national _X_ statewide ___local
 Applicable National Register Criteria:
 ___A ___B _X_C ___D

 [Signature] DSHPO Inventory & Registration October 14, 2021
 Signature of certifying official/Title: Date
 Ohio State Historic Preservation Office Ohio History Connection
 State or Federal agency/bureau or Tribal Government

 In my opinion, the property ___ meets ___ does not meet the National Register
 criteria.

 [Signature] Date
 Signature of commenting official: Title :
 State or Federal agency/bureau or Tribal Government
4. National Park Service Certification

I hereby certify that this property is:

___ entered in the National Register
___ determined eligible for the National Register
___ determined not eligible for the National Register
___ removed from the National Register
___ other (explain:) ____________________

Signature of the Keeper ________________________________ Date of Action ________________

5. Classification

Ownership of Property

(Check as many boxes as apply.)

Private:

Public – Local X

Public – State

Public – Federal

Category of Property

(Check only one box.)

Building(s)

District

Site

Structure X

Object

Zenas King Bowstring Bridge
Name of Property

Sidney
County

Shelby
State OH

Number of Resources within Property
(Do not include previously listed resources in the count)

<table>
<thead>
<tr>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>buildings</td>
<td></td>
</tr>
<tr>
<td>sites</td>
<td></td>
</tr>
<tr>
<td>structures</td>
<td></td>
</tr>
<tr>
<td>objects</td>
<td></td>
</tr>
</tbody>
</table>

____ 1 _____ 0 _____ Total

Number of contributing resources previously listed in the National Register ___0_____

6. Function or Use

Historic Functions
(Enter categories from instructions.)
Transportation; Sub: Road-related (vehicular)

Current Functions
(Enter categories from instructions.)
Transportation; Sub: Pedestrian-related

7. Description

Architectural Classification
(Enter categories from instructions.)
Other: Tubular Bowstring

Materials: (enter categories from instructions.)
Principal exterior materials of the property: Iron

Narrative Description

Summary Paragraph
The Zenas King Bowstring Bridge is a 72-foot tubular bowstring design defined by three primary components: a wrought iron tubular arch, essentially square in cross section; cruciform verticals with diagonal rod cross bracing; and lower chord eye bars with square, “clipped-corner” eyes.
These three components required distinctive iron castings along the length of the lower chord and on the abutments that are, therefore, also characteristic of the King bowstring design. All five components, with a high percentage of originality, are present in this bridge. It crosses a central narrowing of Amos Lake, an approximately two-acre body of water fed from Tawawa Creek and one of two lakes in the 220-acre recreational and natural area known as Tawawa Park operated by the City of Sidney. Removed from its second location and restored in 2020 by Bach Ornamental & Structural Steel of Holt, MI, it retains a high percentage of historic fabric. Furthermore, while on its third location, the current location is compatible with the natural setting of the original rural settings near Ft. Loramie and allows the bridge to convey its historical significance.

This bridge was originally one of two spans built in 1879 for Shelby County where the main highway north from Fort Loramie a small village in the northwestern corner of the county, crossed Loramie Creek adjacent to an aqueduct on the Miami & Erie Canal (figures 1, 2). When the disastrous statewide flood of March 1913 damaged the original bridge abutments, both spans were sold to Bernard Brandewie and moved to lanes on his livestock farm in McClean Township west of the village. Width alterations were made at this time but without impacting the bridge’s structural significance. The nominated property is the only surviving bridge of the original pair.

Narrative Description

The Zenas King Bowstring Bridge consists of a 72-foot, eight-panel bowstring bridge (photos 1, 2). The two bow arches are tubular and were fabricated from two curved channel beams on top and bottom that were connected by riveted sides of iron boilerplate (photos 3, 17). The arch tubes’ cross-sections are 6 x 8½ inches. The ends of the tubes rest on special skewback castings designed to receive the arched tube and connect with the forged and threaded ends of the iron bar lower chords (photo 6), which consist of pairs of 5 x ¾-inch eye bars (photo 5). The eyes of the lower chord bars feature square, “clipped corners” and are connected by pins (photo 7).

Seven cruciform iron verticals (photos 4, 8, 18) with threaded ends for nuts pass through each arch and are clamped to the lower chord with special castings (photo 10). They divide the bridge into eight panels. Each panel (except the end panels) includes diagonal tension rods that also connect through each arch and to the lower chord castings (photo 9). The end panels feature a single diagonal.

Flat iron scrollwork was originally attached to the four ends of the bowstrings (figure 6) to serve as approach railings. A wooden 2 x 8-inch rail is today attached to the verticals to replicate the original railings. A 3½ –foot open, steel cable railing was installed on both sides of the deck to keep modern pedestrians away from the deck’s edges (photos 2, 15).

Three iron rod outriggers are bolted to the outside of each bowstring tube to brace against the lateral sway of the two arches (photos 10, 13). The lower ends of the outriggers are bolted to 6-inch 1 floor beams that rest on top of the lower chord. New 2 x 8-inch wooden floor beams, also resting on the lower chord, support the new wooden deck.
When relocated in 1913 for use on the farm lane (figure 3), the 16-foot roadway was narrowed to 12½ feet. This reduction in width required that the original 6-inch I floor beams connected to the six outriggers also be shortened (photo 13). About 3 feet were removed from the center beam and 1½ feet cut from the other two floor beams. Nonetheless, the shortened floor beams were reattached to the sway bracing in a fashion that duplicated the original connections. No other iron floor beams were present when the historic bridge was first identified in the statewide inventory in 1976. All told, none of these changes to the floor system and its bracing impacted the significant components of King’s design.

The bridge was relocated to Sidney, OH in 2020, and Bach Ornamental & Structural Steel of Holt, MI, completed an in-kind restoration. This firm was responsible for two other major King bowstring restorations—the McIntyre Bridge, Poweshiek Co, IA; and Paper Mill Bridge, New Castle Co., DE. The firm’s work on the Sidney bridge included the replication of some historic fabric. In general, modern hex-shaped nuts were used for the Sidney bridge where necessary to maintain structural integrity, although an effort has been made to restrict their use to places that can be concealed or at least be less conspicuous (photos 8, 14, figure 15). The major exception to this was on the field assembly plates on the sides of the bowstring tubes where modern bolts were used because structural viability was the overriding concern (photo 16).

The work done in 2020 required additional changes to the 1913 sway bracing fabrication in order to facilitate the bridge’s relocation and restoration. The extent of work required suggests that the early twentieth-century work was done using steel because of the heavy corrosion that was evident. In removing the sway bracing, the bolts connecting the bracing to the sides of the tubes had to be burned off (photo 10). Furthermore, the threaded ends of three of the six sway bracing rods had to be cut and new rod welded on and rethreaded (photo 13). Finally, the U-bolts that helped connect the iron floor beams to the lower chords that formed part of the sway bracing were replaced (photo 14).

All fourteen distinctive verticals in this bridge are original (photo 2). A total of fourteen distinctive lower-chord-clamp castings were used to connect the verticals, diagonal bracing, lower chords, and cross bracing under the deck (photo 7). Only two had to be replaced, and an original casting was used as a pattern (photos 19, 20). The replacements are on the first (photos 8, 18) and third verticals at the southwestern corner of the bridge and do not display the pitting evident on the surface of the originals.

Only one of the original iron scrollwork approaches was still intact in 2020. It was used to fabricate replacements at the other three corners (photo 11). A close inspection of the original member (NE corner) reveals the pitting that distinguishes it from the replacements (photo 12).

All of the lower lateral cross bracing of rods beneath the deck could not be salvaged and were replaced in 2020 (photos 8, 14). These elements are largely out-of-sight and are not part of King’s distinguishing features. Modern hex-shaped nuts were used to secure the bracing to the original lower cast clamps. In general, these modern nuts identify the replacement work done in 2020. Everywhere else, the original square nuts were retained.
The modern deck consists of floor beams of treated timbers that rest on the lower chords. Board decking running at right angles to the floor beams is attached to these beams. Historic photographs (Figures 1 and 2) indicate that this is a duplication of the original deck system.

One of the characteristic King components was modified in the restoration work completed in 2020: the side plates of the two bow arches. The original tubes consisted of three primary elements: top and bottom channel beams, two 1/8” wrought iron boilerplate sides, and chain rivets to create a hollow rectangular tube (photo 4). The tubes for each arch of this particular bridge were originally fabricated in the shop into three separate segments (photo 5). These shorter segments facilitated transport to the original construction site. The connections between adjacent segments were staggered so that none of the joints in each of the four sides of the tube aligned, in order to avoid a structural weak spot in the arches. This design required some hand field riveting and careful observation of an unaltered King bowstring reveals the physical differences in the rivet heads done in the shop versus those done in the field (figure 12).

The extent of section loss in the side plates of the arches on this bridge as found in 2020 seriously compromised the structural integrity of the bridge (figures 4, 5). An alarming number of rivets had pulled through the boilerplate, making it necessary to replace the original iron side plates with new steel plates. Although of the same gauge plate, important historic fabric was, therefore, removed in this process. All of the historic rivets, both done in the field and shop, were also removed in that process. The replacement work (figure 8) precisely duplicated the original King design, including details that might have escaped a less careful or thorough restoration contractor. King originally used threaded, square-headed bolts to temporarily assemble his arches in the field and hold them in place while the field riveting was being completed. Unfortunately, they could not be salvaged and were replaced with modern, hexagon-headed bolts (photo 16). So, while original fabric has been removed and replaced, it was done in a sensitive manner that still allows a detailed explanation of how this bridge was assembled in the field.

The Zenas King Bowstring Bridge derives its significance from its distinctive design. It retains historic integrity that represents this design and sufficient historic materials and workmanship that illustrate the design. The bridge has been moved twice as described. The current location is compatible with its original rural setting, crosses an active waterway and maintains the appropriate association with the waterway. The majority of the characteristic King elements in this bridge, verticals, lower chord, lower chord castings, and cast skewbacks, are largely or entirely original, and only the tubular bowstrings have been altered, but in a manner in keeping with their historic integrity. And in the latter case, the tubes retain half their original fabric and replicate important assembly techniques.

Each of the two historic locations of the bridge was rural in character, crossing small waterways, and both were elements of a roadway system, originally public and then private. The new location duplicates the rural character of the historic environs and use in crossing a waterway. While the use has been adapted from a roadway to a pedestrian and biking path, it is compatible in a way that does not change the bridge’s essential function.
Form liners that imitate coursed masonry were used to fabricate new concrete abutments that duplicate the configuration of the originals—short walls and angled wing walls—(photo 15) at the new Tawawa Park location but are not included in the nomination.
8. Statement of Significance

Applicable National Register Criteria
(Mark "x" in one or more boxes for the criteria qualifying the property for National Register listing.)

☐ A. Property is associated with events that have made a significant contribution to the broad patterns of our history.

☐ B. Property is associated with the lives of persons significant in our past.

☒ C. Property embodies the distinctive characteristics of a type, period, or method of construction or represents the work of a master, or possesses high artistic values, or represents a significant and distinguishable entity whose components lack individual distinction.

☐ D. Property has yielded, or is likely to yield, information important in prehistory or history.

Criteria Considerations
(Mark “x” in all the boxes that apply.)

☐ A. Owned by a religious institution or used for religious purposes

☒ B. Removed from its original location

☐ C. A birthplace or grave

☐ D. A cemetery

☐ E. A reconstructed building, object, or structure

☐ F. A commemorative property

☐ G. Less than 50 years old or achieving significance within the past 50 years
Zenas King Bowstring Bridge Sidney Shelby OH
Name of Property County and State

Areas of Significance
(Enter categories from instructions.)
Engineering

Period of Significance
1879

Significant Dates
1879

Significant Person
(Complete only if Criterion B is marked above.)

Cultural Affiliation

Architect/Builder
King Iron Bridge & Manufacturing Company

Statement of Significance Summary Paragraph (Provide a summary paragraph that includes level of significance, applicable criteria, justification for the period of significance, and any applicable criteria considerations.)

The Zenas King Bowstring Bridge is significant under Criterion C in the area of engineering as representative of the distinctive characteristics of the patented tubular bowstring bridge designed by Zenas King in the 1860s and fabricated by the King Iron Bridge & Manufacturing Company of Cleveland, Ohio, until about 1880. It features the rectangle-configured wrought iron tubular arch, cruciform verticals and rod cross bracing, distinctively shaped eye bar lower chords, and related cast iron components necessary to connect all the elements. Tubular bowstring bridges were introduced just prior to the Civil War and became especially popular for highways in the fifteen years after the conflict. Simple to fabricate, King’s tubular design was inexpensive and highly successful and was often the first iron bridge that county commissions and municipalities built throughout the state (figure 13). As a result, the design set a standard which competitors, like the Wrought Iron Bridge Company of Canton, Ohio, quickly emulated. An indication of King’s success was the selection of his patented bowstring design at the Centennial International Exposition grounds in Philadelphia’s Fairmount Park in 1876 (figure 14). Erected in 1879 on a major north-south highway in McClean Township in western Shelby County, the Zenas King Bowstring Bridge was repurposed in 1913 to cross a small stream running through a farm lane in the same township. In this fashion, it demonstrates the common reuse of bridges during the late 19th and early 20th centuries, especially examples short enough to be readily transported to a new location using animal power (figure 3). Its second relocation to Sidney, Ohio, is therefore, in
Zenas King Bowstring Bridge Sidney Shelby OH
Name of Property County and State

keeping with this historic pattern and does not impact the structural or design significance of the bridge as it stood on its original site (photo 1). As one of only two known King bowstring bridges extant in Ohio, this bridge is of state level significance. The other example is located at the Ohio History Center in Columbus and has also been relocated.

The Zenas King Bridge meets the requirements of Criteria Consideration B as moved structure as it retains its significant design features and historic materials to represent King’s workmanship as a bridge designer and builder. The current location is within an environment compatible to the original bucolic rural setting.

Narrative Statement of Significance

Zenas King of Cleveland, Ohio, was one of a handful of 19th-century bridge builders who obtained a national reputation. Starting from a small boiler works and initially producing only a single iron bowstring design (of which the nominated property is an example, figure 13), King created a bridge-building concern—initially the King Iron Bridge & Manufacturing Company but soon shortened to the King Bridge Company—that was among the largest and most diversified in the continental United States by the time of his death in 1892 (Simmons, “National Scale,” pp. 27-33; Darnell, *Directory*, Appendix A). A structure that reflects the culmination of the King Bridge Company’s success is the Detroit-Superior High Level Bridge in Cleveland, a 3,112-foot-long through arch completed across the Cuyahoga River in 1917 and listed on the National Register of Historic Places in 1974. This all lay far in the future, however, when King developed his tubular bowstring design in the late 1850s.

One of the first American iron bridges of any kind was that patented in 1841 by Squire Whipple (figure 9). It used a system of separate, individual castings assembled like a stone arch to create a bowstring whose arch was the primary compression member. A series of wrought-iron links provided the primary tension member and held the castings of the arch together (Delony, p. 28). In 1857, Cincinnati-bridge builder Thomas W. H. Moseley was the first American to patent a wrought-iron bowstring with a continuous tube composed of boilerplate. It was triangular in cross-section (figure 10). Helping him market his bridge was a young man from Vermont named Zenas King. His work with Moseley introduced him to the bridge-building business (figure 11). When Moseley moved to Boston in 1860, King relocated to Cleveland to establish his own bridge-building firm (Simmons, “Bridges & Boilers”).

The tubular bowstring design that King developed became the basis for his national bridge-building business. A metalworker named Peter Frees initially worked with King to build the prototype in 1859, and early the following year they filed an application with the US Patent Office. By the 1860s, the use of tubular compression members for bowstring bridges was not new; but the use of a practical and simple system for mass-producing them using wrought-iron boilerplate remained relatively novel. The King and Frees design employed a tube rectangular in cross section with parallel sides of wrought-iron boilerplate riveted to channel bars at top and bottom (photo 3). If the tube was large, as required for long spans, a third channel bar was riveted to the middle of the tube for additional stiffness and strength. Their patent, obtained in October 1861, proposed a tube that swelled in the center (none are currently known to exist). It
was “improved” in 1866 with a second patent that instead enlarged the two ends of the tubular arch (Simmons, “National Scale,” pp. 24-25).

The circumstances and timing for the introduction of iron bridges varied throughout Ohio, but county commissioners made frequent trips to neighboring communities to view King patent bowstrings as they discussed the pros and cons of this new structural system. An ad prepared by the King company in 1866 (Figure 13) cited structures erected in 11 counties scattered across the state and in the city of Cleveland. King built so many patent bowstrings throughout the state that, in effect, he set a design standard. The efforts of other companies to meet King’s competition undoubtedly promoted the popularity of the bowstring in Ohio during the 1860s and 1870s (Simmons, “Risk,” p. 118).

A study of 19th-century bridge patents in Ohio (Figure 16) demonstrates King’s fundamental role in promoting tubular bowstrings. As indicated earlier, a Cincinnati bridge builder with whom King worked received the first tubular bowstring design in 1857. The second tubular bowstring patent in Ohio was issued to King himself in 1861. The third and fourth tubular bowstring patents were issued to individuals associated with the Wrought Iron Bridge Company, a competing firm from Canton, Ohio, in 1864 and 1866. Both of these designs were repeatedly improved throughout the decade. Beginning the next year, Ohio bridge builders patented a steady stream of tubular bowstrings (Simmons, “Risk of Innovation”). In such a context, it would be difficult to overstate the importance and impact of King’s patent bowstring in Ohio’s engineering heritage.

After Cyrus Force, a trained civil engineer, joined King’s company in the 1860s, a US Patent Office revision was filed in 1867 and again in 1874 that used a uniform cross section throughout the bowstring’s tube (photo 2) (Simmons “National Scale,” p. 26; “Memoir of Cyrus Gildersleeve Force”). This simplified the shop fabrication of King’s bridge and substantially reduced production costs (Simmons, “Bridges & Boilers,” p. 73). The length of the span determined each tube’s cross sectional size.

In the absence of actual business records, historians must frequently depend on advertising prepared by the bridge companies themselves. The first known King catalog was published in 1875 and documented the firm’s virtually exclusive construction of tubular bowstrings prior to that date. A total of 203 bridges were built, ranging in spans from 40 to 250 feet. They were erected in Ohio, New York, Illinois, Maryland, Pennsylvania, Wisconsin, Iowa, Texas, Nebraska, Minnesota, Kansas, New Jersey, Massachusetts, Connecticut, Rhode Island, Michigan, Kentucky, and West Virginia. Among them were the State Street Bridge in Columbus, Ohio of three 120-foot spans, the six 150-foot spans across the Kansas River at Topeka, Kansas, and the five-span bridge measuring a total of 550 feet that replaced the infamous 1873 collapse of a Truesdell-designed bridge in Dixon, Illinois, whose high death toll haunted iron bridge builders (Designs).

The Ohio Department of Transportation (ODOT) published their first statewide historic inventory of publicly owned bridges in 1983. In it, they identified 16 bowstring truss bridges that were either listed on or eligible for the National Register. An additional 7 bowstring bridges were
The Zenas King Bowstring Bridge was built as a pair of spans across Loramie Creek in 1879 (figures 1, 2) near the end of the popular era for bowstring bridges. Early on, some civil engineers objected to the difficulty of stabilizing the arch from lateral sway. The outriggers incorporated on the outside of the arches in the original fabrication of this bridge (photo 13) were an effort to limit sway but were only partially successful. Continued criticism by professionals finally resulted in bowstring designs falling from favor about 1880. Their place was taken by iron through trusses that could be more effectively braced (Simmons, “National Scale,” p. 33; Delony, p. 34).

The bridge was built on a major north-south highway between Piqua to the south in Miami County and Defiance in Defiance County to the north. This important thoroughfare ran through the western portions of Shelby and Auglaize counties paralleling the Miami and Erie Canal, one of two major state-owned canal systems running between the Ohio Valley and Lake Erie.

The Great Flood of March 1913 resulted in major damage to the abutments and forced the replacement of the twin spans. Shelby County transferred ownership of both spans to Bernard Brandewie, who operated a 600-acre cattle and hog farm approximately 3 miles west of the village, now bisected by Brandewie Road, until his death in 1929. The fate of the other bowstring of the pair on the farm is unknown. The bridge was presumably an important cog in the operation of Brandewie’s livestock farm (History of Shelby County). But when first inventoried in 1976 (figure 3), residents of the farm were no longer actively using the remaining bridge and were simply fording the small stream.

The significant components of the Zenas King Bowstring Bridge as defined in the description—the arches, verticals, lower chord, and lower chord connection features—were not impacted by its relocation in 1913 or 2020. Historically, reuse of iron bridges on new locations was a common occurrence, especially those, such as this bridge, that could be moved as a unit by animal power. Disassembly was necessary in 2020 (figures 4, 5, 6) in order to properly restore the bridge, but as noted in the description, all renovation was done in keeping with the original construction techniques and did not impact the structure’s integrity of design, materials and workmanship (figures 7, 8). The bridge still clearly defines the five structural features of the King patent bowstring design, something of vital importance to Ohio’s engineering heritage. The
tubular arches, verticals and diagonal bracing, lower chord eye bars, lower chord castings, and cast skewbacks of King’s design are all still present and predominantly of original fabric.

The bridge meets the requirements for listing under Criterion Consideration B as a moved resource. The relocations did not adversely impact the setting, feeling, and association of the bridge. While on the farm, the bridge continued to be used as a roadway for farm vehicles and animals (figure 3). Furthermore, the relocation to Amos Lake in Tawawa Park continues its use for crossing a body of water and for the movement of people between portions of Benjamin Trail in a park setting compatible with the rural character of the earlier sites (photos 1, 15).
9. Major Bibliographical References

Designs, King Iron Bridge & Manufacturing Company, Manufacturers of Wrought Iron Bridges (Cleveland, O., 1875).

Cleave’s Biographical Cyclopedia of Cuyahoga County (Cleveland, c.1879).

Ohio Department of Transportation. SHE-Zenas King Bridge Rehabilitation. PID No. 106696.

Bridgehunter.com

The Ohio Historic Bridge Inventory, Evaluation, and Preservation Plan (Columbus, OH: Ohio Department of Transportation, 1983).

Previous documentation on file (NPS):

- preliminary determination of individual listing (36 CFR 67) has been requested
- previously listed in the National Register
Zenas King Bowstring Bridge
Name of Property

previously determined eligible by the National Register
designated a National Historic Landmark
recorded by Historic American Buildings Survey #
recorded by Historic American Engineering Record #
recorded by Historic American Landscape Survey

Primary location of additional data:
State Historic Preservation Office
Other State agency
Federal agency
Local government
University
Other
Name of repository: _____________________________________

Historic Resources Survey Number (if assigned): SHE0000404

10. Geographical Data

Acreage of Property Less than one

Use either the UTM system or latitude/longitude coordinates

Latitude/Longitude Coordinates
Datum if other than WGS84:
(enter coordinates to 6 decimal places)

1. Latitude: 40°20′44.9″N Longitude: 84°25′14.9″W

Or
UTM References
Datum (indicated on USGS map):

NAD 1927 or NAD 1983

1. Zone: Easting: Northing:
2. Zone: Easting: Northing:
3. Zone: Easting: Northing:
4. Zone: Easting: Northing:
Verbal Boundary Description (Describe the boundaries of the property.)
The boundaries for the Zenas King Bowstring Bridge are defined by the overall footprint of the bridge, measuring approximately 72 by 12 feet and do not include the modern (2020) concrete abutments that support it.

Boundary Justification (Explain why the boundaries were selected.)
The boundaries for the Zenas King Bowstring Bridge are defined by the overall footprint of the bridge and do not include the modern (2020) concrete abutments that support it, nor any other portion of Tawawa Park. The significance of the property lies in the engineering of the structure of the bridge itself, and this aspect has remained intact through two moves. While important for the practical viability of the bridge, the concrete abutments do not add to its significance and, therefore, have not been included in the nomination.

11. Form Prepared By

name/title: David A. Simmons
organization: Ohio Historic Bridge Association
street & number: PO Box 153
city or town: Galena state: Ohio zip code: 43021
e-mail: everetsherman1877@gmail.com
telephone: 614-565-5142
date: May 16, 2021

Photographs

Photo Log

Name of Property: Zenas King Bowstring Bridge
City or Vicinity: Sidney
County: Shelby State: Ohio
Photographer: David A. Simmons
Date Photographed: August 27, 2020

Description of Photograph(s) and number, include description of view indicating direction of camera:

1 of 20. Description: Overall view of bridge and setting from embankment. Facing northeast.

2 of 20. Description: Overall view of bridge from southwest, camera facing north.

3 of 20. Description: Detail view of western compression tube from southwest.

4 of 20. Description: View of first cruciform vertical of western bowstring from southwest.
5 of 20.
Description: View of eye bar lower chord of western bowstring from northwest.

6 of 20.
Description: View of northwestern cast iron skewback connecting the tube and lower chord.

7 of 20.
Description: Eye bar connection and vertical connection near center of lower chord of western bowstring.

8 of 20.
Description: Detail view of connection of first vertical from southwest. Upper casting clamp is a replacement. Lower casting is original.

9 of 20.
Description: View of diagonal rod crossbracing between lower chord and tube near center of western bowstring from southwest.

10 of 20.
Description: View of top channel beam at center of eastern bowstring tube.

11 of 20.
Description: View of replacement flat iron scrollwork approach at southwest corner, camera facing northeast.

12 of 20.
Description: View of original flat iron scrollwork approach at northeast corner, camera facing south.

13 of 20.
Description: View of lateral sway bracing at second vertical from southwest corner.

14 of 20.
Description: View of lower crossbracing from southeast, camera facing northwest.

15 of 20.
Description: Overall view of bridge and setting from embankment looking northwest.

16 of 20.
Description: Detail of field joint in eastern tube, looking northeast.

17 of 20.
Description: Detail of new side plate of eastern tube, looking northwest.
Zenas King Bowstring Bridge
Sidney
Shelby OH

18 of 20.
Description: Overhead detail of new upper casting clamp at first vertical from southwest corner.

19 of 20.
Description: Overhead detail of original upper casting clamp at first vertical from northwest corner.

20 of 20.
Description: Detail view of connection of first vertical from northwest showing original castings, looking northeast.

Maps:
1. Overview of Tawawa Park
2. View of nomination boundary
3. Photo view map

List of Figures:
Figure 01: Historic view of bridge on original location. Fort Loramie Historical Association

Figure 02: Historic view of bridge on original location, circa 1912. Ken Sowards Collection

Figure 03: Ohio Historic Inventory form photo (SHE-00004-04), taken October 1976 by David A. Simmons. Ohio Historic Preservation Office

Figure 04: Overall condition, August 2020. Bach Steel Photo

Figure 05: Condition of tube side plate, August 2020. Bach Steel Photo

Figure 06: Condition of scrollwork approach, August 2020. Bach Steel Photo

Figure 07: Pad welding repairs of eye bar “eyes.” Bach Steel Photo

Figure 08: Riveting new side plate on tube. Bach Steel Photo

Figure 09: Squire Whipple’s patent #2064, dated April 24, 1841, was America’s first iron bowstring design and incorporated shorter, panel-length castings to create the arches. US Patent Office

Figure 10: T. W. H. Moseley’s 1857 tubular bowstring design had a triangular cross section and used simple, overlapping plates to connect adjoining plates during field assembly. Drawing by Elaine Pierce, David A. Simmons Collection

Figure 11: In 1859, Zenas King was still working for Moseley & Company in Cincinnati when this bridge was built over Storms Creek north of Ironton, in Lawrence County, Ohio,
for the Iron Railroad, a line established to service charcoal iron furnaces. *Ohio History*

Connection

Figure 12: Zenas King used a more elaborate system to connect the four sides of his bowstring tubes during field assembly that required using threaded bolts to temporarily hold the segments in position until the tube was fully riveted. This explanatory drawing, showing the original square-headed bolts, was based on the shorter bowstring now standing at the Ohio History Center in Columbus and thus has a much-reduced cross section in comparison to the Sidney example. Drawing by Elaine Pierce, *David A. Simmons Collection*

Figure 13: The creation and marketing of King’s patented iron bowstring design in the 1860s was perfectly timed to take advantage of expanding iron production stimulated by the Civil War and demands for transportation improvements across Ohio. *Cleveland Leader City Directory, 1866-67*

Figure 14: Evidence of the success of King’s patent bowstrings was their choice for a prominent location in the Centennial International Exposition of 1876 in Philadelphia’s Fairmount Park. Zenas King proudly stood at the end of the bridge upon its completion. *Robert M. Vogel Collection*

Figure 15: Detail photograph of an upper field connection for one of the channel beams following renovation. Photo by Dan Bennett, March 5, 2021.

Zenas King Bowstring Bridge
Name of Property
Shelby County, Ohio
County and State
N/A
Name of multiple listing (if applicable)

Figure 01: Historic view of bridge on original location. *Fort Loramie Historical Association*
Zenas King Bowstring Bridge
Name of Property
Shelby County, Ohio
County and State
N/A
Name of multiple listing (if applicable)

Figure 02: Historic view of bridge on original location, circa 1912. Ken Sowards Collection
Zenas King Bowstring Bridge
Name of Property
Shelby County, Ohio
County and State
N/A
Name of multiple listing (if applicable)

United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Section number Figures Page Additional Documentation

Figure 03: Ohio Historic Inventory form photo (SHE-00004-04), taken October 1976 by David A. Simmons. Ohio Historic Preservation Office
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Zenas King Bowstring Bridge
Name of Property
Shelby County, Ohio
County and State
N/A
Name of multiple listing (if applicable)

Figure 04: Overall condition, August 2020. Bach Steel Photo
<table>
<thead>
<tr>
<th>Section number</th>
<th>Figures</th>
<th>Page</th>
<th>Additional Documentation</th>
</tr>
</thead>
</table>

Zenas King Bowstring Bridge
Name of Property:
Shelby County, Ohio
County and State: N/A
Name of multiple listing (if applicable):

Figure 05: Condition of tube side plate, August 2020. *Bach Steel Photo*
Zenas King Bowstring Bridge

<table>
<thead>
<tr>
<th>Name of Property</th>
<th>Shelby County, Ohio</th>
</tr>
</thead>
<tbody>
<tr>
<td>County and State</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Name of multiple listing (if applicable)

<table>
<thead>
<tr>
<th>Figure 06: Condition of scrollwork approach, August 2020. Bach Steel Photo</th>
<th>Additional Documentation</th>
</tr>
</thead>
</table>

United States Department of the Interior

National Park Service

National Register of Historic Places

Continuation Sheet

<table>
<thead>
<tr>
<th>Section number</th>
<th>Figures</th>
<th>Page</th>
<th>Additional Documentation</th>
</tr>
</thead>
</table>

Image of the Zenas King Bowstring Bridge
Zenas King Bowstring Bridge
Name of Property
Shelby County, Ohio
County and State
N/A
Name of multiple listing (if applicable)

Figure 07: Pad welding repairs of eye bar “eyes.” *Bach Steel Photo*
Zenas King Bowstring Bridge

Name of Property
Shelby County, Ohio
County and State
N/A
Name of multiple listing (if applicable)

Figure 08: Riveting new side plate on tube. Bach Steel Photo
Figure 09: Squire Whipple’s patent #2064, dated April 24, 1841, was America’s first iron bowstring design and incorporated shorter, panel-length castings to create the arches. US Patent Office
<table>
<thead>
<tr>
<th>Section number</th>
<th>Figures</th>
<th>Page</th>
<th>Additional Documentation</th>
</tr>
</thead>
</table>

Figure 10: T. W. H. Moseley’s 1857 tubular bowstring design had a triangular cross section and used simple, overlapping plates to connect adjoining plates during field assembly. Drawing by Elaine Pierce, *David A. Simmons Collection*
Figure 11: In 1859, Zenas King was still working for Moseley & Company in Cincinnati when this bridge was built over Storms Creek north of Ironton, in Lawrence County, Ohio, for the Iron Railroad, a line established to service charcoal iron furnaces. *Ohio History Connection*
Figure 12: Zenas King used a more elaborate system to connect the four sides of his bowstring tubes during field assembly that required using threaded bolts to temporarily hold the segments in position until the tube was fully riveted. This explanatory drawing, showing the original square-headed bolts, was based on the shorter bowstring now standing at the Ohio History Center in Columbus and thus has a much-reduced cross section in comparison to the Sidney example. Drawing by Elaine Pierce, David A. Simmons Collection
<table>
<thead>
<tr>
<th>Section number</th>
<th>Figures</th>
<th>Page</th>
<th>Additional Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zenas King Bowstring Bridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of Property</td>
<td>Shelby County, Ohio</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>County and State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of multiple listing (if applicable)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 13: The creation and marketing of King’s patented iron bowstring design in the 1860s was perfectly timed to take advantage of expanding iron production stimulated by the Civil War and demands for transportation improvements across Ohio. *Cleveland Leader City Directory, 1866-67*
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Section number Figures Page Additional Documentation

Zenas King Bowstring Bridge
Name of Property
Shelby County, Ohio
County and State
N/A
Name of multiple listing (if applicable)

Figure 14: Evidence of the success of King’s patent bowstrings was their choice for a prominent location in the Centennial International Exposition of 1876 in Philadelphia’s Fairmount Park. Zenas King proudly stood at the end of the bridge upon its completion. Robert M. Vogel Collection
Zenas King Bowstring Bridge
Name of Property
Shelby County, Ohio
County and State
N/A
Name of multiple listing (if applicable)

Figure 15: Detail photograph of an upper field connection for one of the channel beams following renovation. Photo by Dan Bennett, March 5, 2021.
OHIO PATENTS

<table>
<thead>
<tr>
<th>PATENT FILE #</th>
<th>NAME</th>
<th>LOCATION</th>
<th>DATE</th>
<th>DESIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>13461</td>
<td>Horace Hewey (III.) and Robert E. Osborn</td>
<td>Springfield, OH</td>
<td>Aug 21, 1855</td>
<td>Arch with suspension cable</td>
</tr>
<tr>
<td>14313</td>
<td>Peter Guiou</td>
<td>Cincinnati</td>
<td>Feb 16, 1856</td>
<td>Wooden and metallic arch</td>
</tr>
<tr>
<td>15823</td>
<td>Isaiah Rogers</td>
<td>Cincinnati</td>
<td>Sept 30, 1856</td>
<td>Cast iron arch</td>
</tr>
<tr>
<td>15873</td>
<td>Balaam G. Anderson</td>
<td>Chillicothe</td>
<td>Oct 14, 1856</td>
<td>Movable bridge for canals</td>
</tr>
<tr>
<td>16572</td>
<td>Thomas W. H. Moseley</td>
<td>Covington, KY</td>
<td>Feb 3, 1857</td>
<td>Tubular arch</td>
</tr>
<tr>
<td>20082</td>
<td>David H. Morrison</td>
<td>Dayton</td>
<td>Apr 27, 1858</td>
<td>Metal connection for wooden truss</td>
</tr>
<tr>
<td>26680</td>
<td>Enoch Jacobs</td>
<td>Cincinnati</td>
<td>Jan 3, 1860</td>
<td>Iron truss</td>
</tr>
<tr>
<td>28148</td>
<td>George Bovey</td>
<td>Chillicothe</td>
<td>May 8, 1860</td>
<td>Draw bridge improvement</td>
</tr>
<tr>
<td>32480</td>
<td>J. H. Junkins</td>
<td>Upper Sandusky</td>
<td>June 4, 1861</td>
<td>Wooden and metallic arch</td>
</tr>
<tr>
<td>33384</td>
<td>Peter M. Frees and Zenas King</td>
<td>Cincinnati & Milan</td>
<td>Oct 1, 1861</td>
<td>Tubular bowstring</td>
</tr>
<tr>
<td>34023</td>
<td>James S. Yerk and G. H. Heming</td>
<td>Tiffin</td>
<td>Dec 24, 1861</td>
<td>Cast iron bowstring</td>
</tr>
<tr>
<td>38966</td>
<td>James Ingersoll</td>
<td>Grafton</td>
<td>June 23, 1863</td>
<td>Turn bridge</td>
</tr>
<tr>
<td>41594</td>
<td>James J. Beard</td>
<td>Columbus</td>
<td>Feb 16, 1864</td>
<td>Cast iron arch</td>
</tr>
<tr>
<td>43202</td>
<td>David Hammond and W. R. Reeves</td>
<td>Canton</td>
<td>June 21, 1864</td>
<td>Bowstring - reissued 1867 & 1869</td>
</tr>
<tr>
<td>45051</td>
<td>Zenas King</td>
<td>Cleveland</td>
<td>Nov 15, 1864</td>
<td>Boiler plate swing bridge</td>
</tr>
<tr>
<td>52860</td>
<td>Martin Kremser</td>
<td>Cleveland</td>
<td>Feb 27, 1866</td>
<td>Iron lattice</td>
</tr>
<tr>
<td>56043</td>
<td>David Hammond</td>
<td>Canton</td>
<td>July 3, 1866</td>
<td>Bowstring - reissued 1867 & 1869</td>
</tr>
<tr>
<td>58266</td>
<td>Zenas King</td>
<td>Cleveland</td>
<td>Sept 25, 1866</td>
<td>Tubular bowstring improvement</td>
</tr>
<tr>
<td>60205</td>
<td>O. G. Leopold</td>
<td>Cincinnati</td>
<td>Dec 4, 1866</td>
<td>Plate Girder bridge</td>
</tr>
<tr>
<td>66900</td>
<td>Robert W. Smith</td>
<td>Tippecanoe</td>
<td>July 16, 1867</td>
<td>Wooden truss</td>
</tr>
<tr>
<td>70245</td>
<td>David H. Morrison</td>
<td>Dayton</td>
<td>Oct 29, 1867</td>
<td>I-beam bowstring-reissued 1871</td>
</tr>
<tr>
<td>71868</td>
<td>John Glass, George P. Schneider, and William B. Rezner</td>
<td>Cleveland</td>
<td>Dec 10, 1867</td>
<td>Oval tubular bowstring</td>
</tr>
<tr>
<td>72611</td>
<td>Joseph Davenport</td>
<td>Massillon</td>
<td>Dec 24, 1867</td>
<td>Lattice bowstring</td>
</tr>
<tr>
<td>77103</td>
<td>John Sanderson</td>
<td>Fredericksburg</td>
<td>Apr 21, 1868</td>
<td>Cast iron girder</td>
</tr>
<tr>
<td>82388</td>
<td>Joseph Davenport</td>
<td>Massillon</td>
<td>Sept 22, 1868</td>
<td>Bowstring improvement</td>
</tr>
<tr>
<td>86538</td>
<td>David Hammond and W. R. Reeves</td>
<td>Canton</td>
<td>Feb 2, 1869</td>
<td>Bowstring</td>
</tr>
</tbody>
</table>
Zenas King Bowstring Bridge

<table>
<thead>
<tr>
<th>Section number</th>
<th>Figures</th>
<th>Name of Property</th>
<th>County and State</th>
<th>Date</th>
<th>Additional Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>89400</td>
<td>Joseph Gill</td>
<td>Cincinnati</td>
<td>Shelby County, Ohio</td>
<td>Apr 27, 1869</td>
<td>Metal tube with honeycomb</td>
</tr>
<tr>
<td>94321</td>
<td>John Laird</td>
<td>Canton</td>
<td></td>
<td>Aug 31, 1869</td>
<td>Bowstring</td>
</tr>
<tr>
<td>94322</td>
<td>John and G. F. Laird</td>
<td>Canton</td>
<td></td>
<td>Aug 31, 1869</td>
<td>Bowstring</td>
</tr>
<tr>
<td>96569</td>
<td>Samuel Ensign</td>
<td>New Franklin</td>
<td></td>
<td>Nov 9, 1869</td>
<td>Metal verticals for truss</td>
</tr>
<tr>
<td>97714</td>
<td>Robert W. Smith</td>
<td>Toledo</td>
<td></td>
<td>Dec 7, 1869</td>
<td>Wooden truss</td>
</tr>
<tr>
<td>103911</td>
<td>Mahlon Miller</td>
<td>Cleveland</td>
<td></td>
<td>June 1870</td>
<td>Tubular truss</td>
</tr>
<tr>
<td>104867</td>
<td>David McCurdy</td>
<td>Ottawa</td>
<td></td>
<td>June 28, 1870</td>
<td>Bowstring</td>
</tr>
<tr>
<td>104868</td>
<td>David McCurdy</td>
<td>Ottawa</td>
<td></td>
<td>June 28, 1870</td>
<td>Bowstring</td>
</tr>
<tr>
<td>104869</td>
<td>David McCurdy</td>
<td>Ottawa</td>
<td></td>
<td>June 17, 1870</td>
<td>Bridge bracing</td>
</tr>
<tr>
<td>104969</td>
<td>Winfield Scott Levake</td>
<td>Cleveland</td>
<td></td>
<td>July 5, 1870</td>
<td>Bowstring</td>
</tr>
<tr>
<td>107576</td>
<td>Isaac Wheeler</td>
<td>Sciotoville</td>
<td></td>
<td>Sept 10, 1870</td>
<td>Wooden truss</td>
</tr>
<tr>
<td>113030</td>
<td>Ferdinand Dieckman</td>
<td>Cincinnati</td>
<td></td>
<td>Mar 28, 1871</td>
<td>Bowstring</td>
</tr>
<tr>
<td>113916</td>
<td>Ferdinand Pairan</td>
<td>Dayton</td>
<td></td>
<td>Apr 18, 1871</td>
<td>Gate for drawbridges</td>
</tr>
<tr>
<td>119466</td>
<td>Levi Kittinger</td>
<td>Massillon</td>
<td></td>
<td>Oct 3, 1871</td>
<td>Tubular bowstring</td>
</tr>
<tr>
<td>125128</td>
<td>Daniel Forargue</td>
<td>Cleveland</td>
<td></td>
<td>Apr 2, 1872</td>
<td>Bowstring</td>
</tr>
<tr>
<td>127791</td>
<td>Reuben L. Partridge</td>
<td>Marysville</td>
<td></td>
<td>June 11, 1872</td>
<td>Wooden truss</td>
</tr>
<tr>
<td>128509</td>
<td>William B. Rezner</td>
<td>Cleveland</td>
<td></td>
<td>July 2, 1872</td>
<td>Skewback for tubular bowstring</td>
</tr>
<tr>
<td>128350</td>
<td>Michael Adler</td>
<td>Canton</td>
<td></td>
<td>June 25, 1872</td>
<td>Bridge girders</td>
</tr>
<tr>
<td>134269</td>
<td>John Gray</td>
<td>Cincinnati</td>
<td></td>
<td>Dec 24, 1872</td>
<td>Pier for suspension bridge</td>
</tr>
<tr>
<td>135802</td>
<td>David Hammond, Michael Adler, and Job Abbott</td>
<td>Canton</td>
<td></td>
<td>Feb 11, 1873</td>
<td>Tubular bowstring</td>
</tr>
<tr>
<td>140181</td>
<td>Daniel Bower</td>
<td>Troy</td>
<td></td>
<td>June 24, 1873</td>
<td>Wooden truss</td>
</tr>
<tr>
<td>141056</td>
<td>Henry Hunter and Jesse Rice</td>
<td>Scioto</td>
<td></td>
<td>July 22, 1873</td>
<td>Wooden truss</td>
</tr>
<tr>
<td>146034</td>
<td>James Valleley</td>
<td>Canton</td>
<td></td>
<td>Dec 30, 1873</td>
<td>Tubular bowstring</td>
</tr>
<tr>
<td>146400</td>
<td>John Patterson and Andrew Sprague</td>
<td>Toledo</td>
<td></td>
<td>Jan 13, 1874</td>
<td>Howe truss improvement</td>
</tr>
<tr>
<td>146916</td>
<td>William Laird</td>
<td>Canton</td>
<td></td>
<td>Jan 27, 1874</td>
<td>Tubular bowstring</td>
</tr>
<tr>
<td>148010</td>
<td>Jonathan and Zimri Wall</td>
<td>Wilmington</td>
<td></td>
<td>Feb 24, 1874</td>
<td>Lattice bowstring</td>
</tr>
<tr>
<td>150151</td>
<td>D. Hammond and Job Abbott</td>
<td>Canton</td>
<td></td>
<td>Apr 28, 1874</td>
<td>Iron pony truss</td>
</tr>
<tr>
<td>150152</td>
<td>D. Hammond and Job Abbott</td>
<td>Canton</td>
<td></td>
<td>Apr 28, 1874</td>
<td>Iron pony truss</td>
</tr>
<tr>
<td>150153</td>
<td>D. Hammond and Job Abbott</td>
<td>Canton</td>
<td></td>
<td>Apr 28, 1874</td>
<td>Iron pony truss</td>
</tr>
<tr>
<td>153483</td>
<td>D. Hammond and M. Adler</td>
<td>Canton</td>
<td></td>
<td>July 28, 1874</td>
<td>Bridge pier</td>
</tr>
<tr>
<td>154644</td>
<td>Andrew Burneson</td>
<td>Mansfield</td>
<td></td>
<td>Sept 1, 1874</td>
<td>Tubular bowstring</td>
</tr>
<tr>
<td>155555</td>
<td>R. W. Smith</td>
<td>Toledo</td>
<td></td>
<td>Sept 29, 1874</td>
<td>Bridge turn table</td>
</tr>
<tr>
<td>164349</td>
<td>Jonathan Wall</td>
<td>Wilmington</td>
<td></td>
<td>June 8, 1875</td>
<td>Lattice bowstring</td>
</tr>
<tr>
<td>Section number</td>
<td>Figures</td>
<td>Name of Property</td>
<td>County and State</td>
<td>Additional Documentation</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>164135</td>
<td></td>
<td>Zenas King Bowstring Bridge</td>
<td>Shelby County, Ohio</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>164136</td>
<td></td>
<td>Name of multiple listing (if applicable)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166042</td>
<td></td>
<td>164135 Alexander E. Brown Cleveland June 8, 1875 Rail compression members</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166959</td>
<td></td>
<td>164136 Alexander E. Brown Cleveland June 8, 1875 Rail compression members</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166960</td>
<td></td>
<td>164137 Alexander E. Brown Cleveland June 8, 1875 Compound rail compression member</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1673253</td>
<td></td>
<td>166042 James Valleley Canton July 27, 1875 Bowstring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1673253</td>
<td></td>
<td>166959 William Black Lancaster Aug 24, 1875 Drawbridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173253</td>
<td></td>
<td>166960 William Black Lancaster Aug 24, 1875 Suspension truss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173253</td>
<td></td>
<td>173253 M. B. Adams and F. L. Krause Cleveland Feb 8, 1876 Bascule bridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174554</td>
<td></td>
<td>174554 Samuel Mills New Castle Mar 7, 1876 Bridge pier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175165</td>
<td></td>
<td>175165 John J. Reicherts Delaware Mar 21, 1876 Wooden stave arch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184490</td>
<td></td>
<td>184490 Job Abbott Canton Nov 21, 1876 Diagonal connection for bowstring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184520</td>
<td></td>
<td>184520 D. Hammond, Henry G. Morse, and Job Abbott Canton Nov 21, 1876 Metal truss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184521</td>
<td></td>
<td>184521 D. Hammond Canton Nov 21, 1876 Wrought iron post</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184522</td>
<td></td>
<td>184522 D. Hammond Canton Nov 21, 1876 Wrought iron girder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185230</td>
<td></td>
<td>185230 R. C. Mounsdon Cleveland Apr 10, 1877 Drawbridge gears</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191555</td>
<td></td>
<td>191555 Everett S. Sherman Galena June 5, 1877 Combination bridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193825</td>
<td></td>
<td>193825 M. McGrath Cleveland Aug 7, 1877 Drawbridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195820</td>
<td></td>
<td>195820 Albert Hubbard and Lewis Eddy Cleveland Oct 2, 1877 Timber splice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215223</td>
<td></td>
<td>215223 Samuel Holt Worthington May 13, 1879 Wooden truss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219846</td>
<td></td>
<td>219846 August Borneman Lancaster Sept 23, 1879 Shortspan truss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241763</td>
<td></td>
<td>241763 Jonathan Wall Circleville May 17, 1881 Eccentric pin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>328758</td>
<td></td>
<td>328758 Charles and George Carr Sugar Tree Ridge Oct 20, 1885 Wooden truss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>357638</td>
<td></td>
<td>357638 Robert W. Smith Toledo Feb 15, 1887 Swing bridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360273</td>
<td></td>
<td>360273 August Borneman Lancaster Mar 29, 1887 Composite bridge pier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>365970</td>
<td></td>
<td>365970 George Coutlas Calais July 5, 1887 Wooden bridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>381584</td>
<td></td>
<td>381584 Reuben Sawyler Columbus Apr 24, 1888 Swing bridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>387139</td>
<td></td>
<td>387139 Samuel Buchanan Bellefontaine July 31, 1888 Connections for wooden bridges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>389951</td>
<td></td>
<td>389951 Samuel Buchanan Bellefontaine Sept 25, 1888 Wooden truss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>389980</td>
<td></td>
<td>389980 Reuben Sawyler Columbus Sept 25, 1888 Swing bridge mechanism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>438511</td>
<td></td>
<td>438511 Stephen D. Webb and Lewis R. Haag Middleport Oct 14, 1890 Bent rail bridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>443714</td>
<td></td>
<td>443714 Nathaniel W. McGiffin Canal Lewisville Dec 30, 1890 Wooden bridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>485689</td>
<td></td>
<td>485689 James Hardesty Cambridge Nov 8, 1892 Vertical posts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>531768</td>
<td></td>
<td>531768 William Breisfoard Jacksensburg Jan 1, 1895 Wooden arch</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zenas King Bowstring Bridge
Name of Property
Shelby County, Ohio
County and State
N/A
Name of multiple listing (if applicable)

National Register of Historic Places
Continuation Sheet

<table>
<thead>
<tr>
<th>Section number</th>
<th>Figures</th>
<th>Name of multiple listing (if applicable)</th>
<th>County and State</th>
<th>Name of Property</th>
<th>Date</th>
<th>Type of Bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>539506</td>
<td></td>
<td>William N. Carr</td>
<td>Shelby County, Ohio</td>
<td>Sugar Tree Ridge</td>
<td>May 21, 1895</td>
<td>Combination bridge connections</td>
</tr>
<tr>
<td>561375</td>
<td></td>
<td>John Coup</td>
<td>Cleveland</td>
<td>Cleveland</td>
<td>June 2, 1896</td>
<td>Drawbridge safety device</td>
</tr>
<tr>
<td>562805</td>
<td></td>
<td>John Coup</td>
<td>Cleveland</td>
<td>Cleveland</td>
<td>June 30, 1896</td>
<td>Drawbridge safety device</td>
</tr>
<tr>
<td>591832</td>
<td></td>
<td>David Fisher</td>
<td>Kenton</td>
<td>Kenton</td>
<td>Oct 19, 1897</td>
<td>Wooden or combination truss</td>
</tr>
<tr>
<td>624618</td>
<td></td>
<td>William Breisfoard</td>
<td>Heno</td>
<td>Heno</td>
<td>May 9, 1899</td>
<td>Gas pipe truss bridge</td>
</tr>
<tr>
<td>633811</td>
<td></td>
<td>John Cowing</td>
<td>Cleveland</td>
<td>Cleveland</td>
<td>Sept 26, 1899</td>
<td>Bascule lift bridge</td>
</tr>
<tr>
<td>644405</td>
<td></td>
<td>John Cowing</td>
<td>Cleveland</td>
<td>Cleveland</td>
<td>Feb 27, 1900</td>
<td>Bascule lift bridge</td>
</tr>
</tbody>
</table>