
   

Sum of Squares Game 
 
 
Grade or age level: Grades 3 – 7       Time: 90 minutes  Form of work: Small groups 
 
Background 
Thyrsa Svager is one of the eight Black mathematicians that have obtained a PhD in 
mathematics at The Ohio State University. On her master’s thesis, she explored the problem of 
describing the numbers that can be represented as the sum of two, three or four squares. Here, 
the word “squares” refers to square numbers or perfect squares, that is numbers that are the 
resulting product of an integer with itself. 
In this activity, students explore some of the concepts on Dr. Svager’s thesis through a two-
player board game. An alternative, simpler game is offered for younger students. 
 
Sum of two squares 
To check if an integer can be represented as the sum of two squares, one has to look at its 
prime factorization. It should not contain any primes that are 1 less than a multiple of 4, unless 
said prime appears an even number of times. Formally, an integer greater than one can be 
written as a sum of two squares if and only if its prime decomposition contains no factor 𝑝!, 
where 𝑝 ≡ 3 (mod 4) and 𝑘 is odd. 
Examples: 
• 6 = 2 × 3  cannot be written as the sum of two squares because its prime factorization 

contains a single 3 (and 3 is 4 – 1).  
• 18 = 2 × 3 × 3 can be represented as sums of two squares, because even though 3 is 1 less 

than a multiple of 4, it appears two times. 
• 130 = 2 × 5 × 13 can also be represented as sums of two squares because it does not 

contain any primes that are 1 less than a multiple of 4 (both 5 and 13 are 1 more than a 
multiple of 4, 5 = 4 + 1 and 13 = 12 + 1). 

 
Sum of three and four squares 
The only case where a number cannot be written as the sum of three squares is when it’s the 
product of a power of 4 times a number that is one less than a multiple of 8. Formally, the 
Legendre’s three-square theorem states that the only numbers that cannot be written as sum 
of three squares are those of the form 4"(8𝑏 + 7) with 𝑎, 𝑏 ≥ 0.  
Examples:  
• 4 and 16 can be written as the sum of three squares because, even though they are both 

powers of 4, they are not multiplied by a number that is one less than a multiple of 8. 
• 7 cannot be written as the sum of three squares because 7 is one less than a multiple of 8 

and 1 is a power of 4 (7 = 1 × 7 = 4#(8(0) + 7)). 
• 16 × 7 = 112 and 4 × 15 = 60 are other examples of numbers than cannot be represented 

as sums of three squares. 



   

Finally, Lagrange’s four-square theorem states that all numbers can be represented as the sum 
of four squares. 
 
Some example representations 
 

Number Two Squares Three Squares Four squares 
4 0$ + 2$ 0$ + 0$ + 2$ 1$ + 1$ + 1$ + 1$ 
6  1$ + 1$ + 2$ 0$ + 1$ + 1$ + 2$ 
7   1$ + 1$ + 1$ + 2$ 

16 0$ + 4$ 0$ + 0$ + 4$ 2$ + 2$ + 2$ + 2$ 
18 3$ + 3$ 1$ + 1$ + 4$ 0$ + 1$ + 1$ + 4$ 
21  1$ + 2$ + 4$ 0$ + 1$ + 2$ + 4$ 
25 3$ + 4$ 0$ + 0$ + 5$ 2$ + 1$ + 2$ + 4$ 
36  2$ + 4$ + 4$ 1$ + 1$ + 3$ + 5$ 
50 5$ + 5$ 3$ + 4$ + 5$ 1$ + 2$ + 3$ + 6$ 

 
If you need to quickly find a two, three, or four squares representation, we recommend using 
the following website, which is a powerful calculator: https://www.wolframalpha.com/ On the 
search bar, type the equation you need to solve, namely 𝑎$ + 𝑏$ + 𝑐$ + 𝑑$ = the number you 
are searching for, using as many squares as you need. Press enter and wait for results to load. It 
will give more information that you need but look for the “Integer solutions” subtitle to find the 
representation you need.	
 
 
Lesson Details 
 
Objectives 
• To discover the hidden lives of Black mathematicians from Ohio State. 
• To realize that the valuable work and stories of some people remain hidden and we can do 

something to change that. 
• To practice multiplying and adding.  
• To introduce the concept of a square number. 
• To identify patterns. 
 
 
Links with Standards 

SOCIAL SCIENCES 
Grade Standard 

2 4. Biographies can show how peoples’ actions have shaped the world in 
which we live. 

4 8. Many technological innovations that originated in Ohio benefitted the 
United States 



   

MATHEMATICS 
Code Standard 

3.MD.7 Relate area to the operations of multiplication and addition. 
4.OA.4 Find all factor pairs for a whole number in the range 1-100. Recognize that a 

whole number is a multiple of each of its factors. Determine whether a 
given whole number in the range 1-100 is a multiple of a given one-digit 
number. Determine whether a given whole number in the range 1-100 is 
prime or composite. 

4.OA.5 Generate a number or shape pattern that follows a given rule. Identify 
apparent features of the pattern that were not explicit in the rule itself. 

Practice 1 Make sense of problems and persevere in solving them. 
Practice 2 Reason abstractly and quantitatively. 
Practice 3 Construct viable arguments and critique the reasoning of others. 
Practice 8 Look for and express regularity in repeated reasoning. 

 
 
Materials  
• Thyrsa Svager poster 
• Thyrsa Svager video 
• Projector 
• Paper and pencil 
• One game set per group of 3 or 4 students. Each game set includes: 

o Number cards (1 to 50) 
o Square cards (19 total in seven different sizes) 

 
 
Opening Activities/Motivation (30 minutes) 
 
1. Introduce Dr. Thyrsa Frazier Svager using the slides that you can access on this link. The set 

of slides contain the following short biography of her and a series of question to reflect 
upon her life and circumstances. Discuss the questions with the class. 

Born in 1930 in Wilberforce, Ohio, Thyrsa Frazier Svager achieved what few African-American 
women of her generation have in the field of education. She was one of the first African-
American women in the United States to earn a Ph.D. in mathematics. Her mother (a professor) 
and her father (a statistician) instilled the importance of education in her from a young age.  
Thyrsa Svager graduated from the Wilberforce University Preparatory Academy at the age of 15, 
going on to complete her undergraduate studies at Antioch College in Yellow Springs, and 
earning both her master’s degree and doctorate in mathematics at The Ohio State University. Dr. 
Svager worked as a statistical analyst at Wright-Patterson Air Force Base and as an instructor at 
Texas Southern University in Houston. She spent most of her career at Central State University, 
where she not only served as professor, but also as administrator, Dean, Provost, and Interim 
President. 



   

• Dr. Svager was 1 of 4 black students at her college at the time of enrollment. How do you 
imagine she felt? What would you have done if you had been her classmate? 

• Do you think her parents’ professions might have influenced her career choice? 
• What are your parents’ occupations? Would you like to work on the same fields? 

 
2. Introduce the activity by mentioning that the game they are going to play is inspired by 

Svager’s master thesis work “The representation of integers as sums of two, three or four 
squares.” Further, explain what the word “squares” means in that context: a square is a 
number that results from the area of a square whose sides have an integer length. We 
suggest using the following examples, emphasizing that the square numbers are 1, 4, and 9 
(the area, not the side): 

    

 

   

       

       

     Side: 1        Side: 2       Side: 3 
Area: 1 × 1 = 1 Area: 2 × 2 = 4          Area: 3 × 3 = 9 

 
To gauge understanding, ask students to mention another square number. Then ask if 5 (or 
any other number in between 1, 4, and 9) is a square number. Invite them to share their 
thought processes in concluding that 2, 3, 5, 6, 7, and 8 are not square numbers. 

Variation: Depending on the characteristics of the group, you can have students notice that 
areas of squares are always calculated as a repeated multiplication (the number times itself). 
Thus, another way of defining square numbers is that they are numbers that result from the 
multiplication of a whole number with itself. 

3. Continue explaining the title of the thesis, now focusing on the part about the sum. Svager 
was studying three related problems: numbers that result from adding two squares, 
numbers that result from adding three squares, and numbers that result from adding four 
squares. For example, if we sum 1 + 4 (the areas of a square with side 1 and a square with 
side 2, respectively) the result is 5. Ask them to come up with another example.  
Point out that not all numbers can be written as the sum of two squares; Svager was 
studying which ones can. Give an example of this, like 3 which can only be broken up into 
the sum of two positive integers as 3 = 1 + 2, but 2 is not a square number, so it doesn’t 
work. However, 3 can in fact be written as the sum of three squares, because 3 = 1 + 1 + 1 
and 1 is indeed a square number. Challenge them to give further examples of sums of three 
and four squares. 

Note: Since 0 × 0 = 0, 0 is in fact a square number. Thus, for example, 5 can be written as the 
sum of three squares as 5 = 0 + 1 + 4. However, 0 is not the area of a square, which can be 
confusing to younger students. We suggest you don’t bring it up, and only explain this point if 
the students themselves bring it up.  
The game leaves out the cases that use a 0 in their sum of squares representation. In the case 
of two squares, those are simply the square numbers themselves. 



   

4. Finally, mention that master theses are often an exhaustive review of previous work done 
by others in a specific field. In the case of Svager, she chose to survey this topic, but the 
problems she analyzes were solved before the 19th century. 

 
 
Procedures (25 minutes) 
 
Warming Up (10 minutes) 
1. Before playing the game, spend a little more time getting familiar with the problem Svager 

studied. To do so, organize the class into groups of 3 or 4 students.  
2. Give each group a set of square cards.  
3. As a group, ask them to combine the cards in pairs in as many ways as possible and to write 

down the sum of each pair. 
4. Make sure that they understand that, after registering a pair, they can undo that pair and 

match these cards with other cards. 
5. Once the groups have a good amount of pairs written down, they can move on to repeat the 

activity now with trios of cards. 
 
Game (15 minutes)  
1. Students can play in the same groups they were in.  

2. Ask them to put away the list they made on the previous step and then distribute the 
number cards, which simply have the numbers 1 to 50 on them. 

3. To prepare for the game, the groups should mix up the number cards and put the pile 
facing down. They should also spread all their square cards on the table, face up. 

4. Players take turns to draw a number card from the deck, which will be placed on the table 
facing up, where all players can see it.  

5. At this point, all players will quickly try to find two square cards that add up to the number 
card. The first player to grab and present two such cards, claims the number card.  

6. Players cannot pick up cards and keep them on their hands while still looking for a card. 
Cards can only be picked up when the player has located the two that add up to the 
number card. 

7. The person who claims the number card keeps that card, but the square cards must be 
returned to the table.  

8. If the number card cannot be expressed as the sum of two squares, the group needs to 
agree that there is no solution. In that case, the number card is discarded.  

Variation of previous step: A player can claim the number card if they correctly explain why that 
number cannot be written as the sum of two squares. The other players as a group will judge 
whether the explanation is satisfactory. The group can ask questions from the player explaining, 
to clarify the argument. In this case, the teacher should motivate students to judge fairly. 



   

9. The game is over when there are no more number cards on the pile. The winner is the 
player with the most claimed cards. 

 
Let every group finish at least one full round. Depending on available time, they can either stop 
there, play more rounds, or play alternative versions of the game with sums of three or four 
squares or allowing for all possibilities on the same game (on a round, players can present 
either two, three, or four squares to add up to the number card). When they are done playing, 
have them keep the discarded cards separate for further analysis during the next stage. If they 
are going to play the other versions of the game, ask them to write down the numbers on the 
cards they discarded on each game. 
 
 
Closure (35 minutes) 

 
1. Ask the students to say the numbers on the cards they discarded and write them on the 

board. These should be the numbers which cannot be written as sums of two squares. For 
each number they give, make sure that the whole class agrees that the card was correctly 
discarded. If someone disagrees, they should give a way of writing that number as the sum 
of two squares. Promote an environment where students feel comfortable sharing their 
thoughts even if they are incorrect, and where they can politely correct each other. You 
might want to point out that it is easy to make these mistakes as we are playing, especially 
since the game is fast paced; finding the correct sum of squares is a difficult task. Explain 
that is the reason why you are dedicating some time to check.  

2. Correct any mistakes the class might have made. The numbers on the board should be 1, 3, 
4, 6, 7, 9, 11, 12, 14, 15, 16, 19, 21, 22, 23, 24, 27, 28, 30, 31, 33, 35, 36, 38, 39, 42, 43, 44, 
46, 47, 48, and 49.  

3. Ask the class to look for any patterns on these numbers. One thing they are likely to spot is 
that almost all multiples of 3 and all multiples of 7 cannot be written as the sum of two 
squares. The only exceptions are 18 and 45, which are multiples of 9. If no one in the class 
identifies these patterns, you can reveal it to them.  

Note: 9 and 49 can be written as the sum of two squares, but the representations would need 
0. The list also includes all multiples of 11 and 19, but that is likely to go unnoticed. 

4. If they played with sums of three squares, repeat steps 1 through 3 with that game too. 
Here, the recommendation is to first cross out all the numbers that could be written as sum 
of two squares, but not as sum of three. This is because those numbers can technically be 
represented as sum of three squares, but the representation involves 0. Once those are 
crossed out, the list should be 1, 4, 7, 15, 16, 23, 28, 31, 39, and 47. At this point, students 
might notice that most some of the square numbers themselves are on the list (1, 4, 16). 
The rest of the numbers (excluding 28) are an arithmetic sequence that starts at 7 and then 
increases by 8. If this hypothesis comes up, you can have them test it by verifying that the 
next couple numbers on the sequence (55 and 63) cannot be represented as the sum of 



   

three squares either. One good conclusion they could reach is that the list of numbers that 
cannot be expressed as sum of three squares is made up of several sequences. 

5. If they played with four squares, after comparing their results, the class should be able to 
conclude that all numbers can be represented as a sum of four squares.  

6. Finally, explain that this is a problem that has interested mathematicians for a long time 
and that, in her thesis, Dr. Svager described the patterns that show up in the numbers that 
can be written as sums of two, three, and four squares.  

7. To wrap up, motivate a discussion on the game experience. Let students start by sharing 
about any aspect of it they want. If they need more specific directions, you can ask what 
they liked about the game and what challenges they encountered. If they played the 
variations, ask which one they think was the easiest. 

Variation: As a last point or assignment, you can ask them to reflect upon what sort of problem 
would like to study if they had to write a math dissertation. 

8. Answer any last questions students may have. 
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GAME SET 
CONTENTS 

Material Quantity 

Number cards 
1 of each number 

(from 1 to 50) 
Square card 1 4 
Square card 2 4 
Square card 4 4 
Square card 9 3 
Square card 16 2 
Square card 25 1 
Square card 49 1 

Instructions: The following pages make one game set, except for the last page, which 
makes materials for four sets. Cut along the thick continuous lines only.



5 6 7 8 9

10 11 12 13 14

15 16

21 22 23 24

25 26 27 28

17 18 19

20

29



30 31 32 33 34

35 36 37 38 39

40 41

46 47 48 49

50 1 2 3

42 43 44

45

4



32

52

32

5232

1212 12



62
22

22

22

42 42



72

12
32 22



42 42

42 42

Note: Make only one copy of this page for every four game sets.




